Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cancer Med ; 12(12): 12967-12974, 2023 06.
Article in English | MEDLINE | ID: covidwho-2293605

ABSTRACT

INTRODUCTION: Cancer patients are frail individuals, thus the prevention of SARS-CoV-2 infection is essential. To date, vaccination is the most effective tool to prevent COVID-19. In a previous study, we evaluated the immunogenicity of two doses of mRNA-based vaccines (BNT162b2 or mRNA-1273) in solid cancer patients. We found that seroconversion rate in cancer patients without a previous exposure to SARS-CoV-2 was lower than in healthy controls (66.7% vs. 95%, p = 0.0020). The present study aimed to evaluate the clinical efficacy of the vaccination in the same population. METHODS: This is a single-institution, prospective observational study. Data were collected through a predefined questionnaire through phone call in the period between the second and third vaccine dose. The primary objective was to describe the clinical efficacy of the vaccination, defined as the percentage of vaccinated subjects who did not develop symptomatic COVID-19 within 6 months after the second dose. The secondary objective was to describe the clinical features of patients who developed COVID-19. RESULTS: From January to June 2021, 195 cancer patients were enrolled. Considering that 7 (3.59%) patients tested positive for SARS-CoV-2 and 5 developed symptomatic disease, the clinical efficacy of the vaccination was 97.4%. COVID-19 disease in most patients was mild and managed at home; only one hospitalization was recorded and no patient required hospitalization in the intensive care unit. DISCUSSION: Our study suggests that increasing vaccination coverage, including booster doses, could improve the prevention of infection, hospitalization, serious illness, and death in the frail population of cancer patients.


Subject(s)
COVID-19 , Neoplasms , Humans , COVID-19/prevention & control , BNT162 Vaccine , SARS-CoV-2 , Treatment Outcome , Neoplasms/therapy
2.
Int J Cancer ; 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2232221

ABSTRACT

Previous studies on the immunogenicity of SARS-CoV-2 mRNA vaccines showed a reduced seroconversion in cancer patients. The aim of our study is to evaluate the immunogenicity of two doses of mRNA vaccines in solid cancer patients with or without a previous exposure to the virus. This is a single-institution, prospective, nonrandomized study. Patients in active treatment and a control cohort of healthy people received two doses of BNT162b2 (Comirnaty, BioNTech/Pfizer, The United States) or mRNA-1273 (Spikevax, Moderna). Vaccine was administered before starting anticancer therapy or on the first day of the treatment cycle. SARS-CoV-2 antibody levels against S1, RBD (to evaluate vaccine response) and N proteins (to evaluate previous infection) were measured in plasma before the first dose and 30 days after the second one. From January to June 2021, 195 consecutive cancer patients and 20 healthy controls were enrolled. Thirty-one cancer patients had a previous exposure to SARS-CoV-2. Cancer patients previously exposed to the virus had significantly higher median levels of anti-S1 and anti-RBD IgG, compared to healthy controls (P = .0349) and to cancer patients without a previous infection (P < .001). Vaccine type (anti-S1: P < .0001; anti-RBD: P = .0045), comorbidities (anti-S1: P = .0274; anti-RBD: P = .0048) and the use of G-CSF (anti-S1: P = .0151) negatively affected the antibody response. Conversely, previous exposure to SARS-CoV-2 significantly enhanced the response to vaccination (anti-S1: P < .0001; anti-RBD: P = .0026). Vaccine immunogenicity in cancer patients with a previous exposure to SARS-CoV-2 seems comparable to that of healthy subjects. On the other hand, clinical variables of immune frailty negatively affect humoral immune response to vaccination.

3.
Hum Vaccin Immunother ; 17(12): 4747-4754, 2021 Dec 02.
Article in English | MEDLINE | ID: covidwho-1655943

ABSTRACT

In Italy, SARS-CoV-2 vaccination campaign prioritized healthcare workers (HCWs) to receive two doses of BNT162b2 vaccine, irrespective of a previous SARS-CoV-2 infection. In this real-life study, we compared the humoral response to BNT162b2 vaccine in HCWs with and without a previous SARS-CoV-2 infection. Of the 407 HCWs enrolled, 334 (82.1%) were SARS-CoV-2-naive and 73 (17.9%) SARS-CoV-2-experienced. Post-vaccine humoral response was detectable in more than 98% of HCWs. Overall, the median level of anti-S IgG in SARS-COV-2-experienced HCWs was twice as high as those of SARS-CoV-2-naive subjects (24641.0 AU/mL [IQR: 15273.0->40000.0] versus 13053.8 [IQR: 7303.3-20105.8]; p < .001), irrespective of the time elapsed from SARS-CoV-2 previous infection. In a subgroup of SARS-CoV-2-naive and -experienced subjects who received only one dose of the vaccine, the latter showed 32 times higher levels of anti-S IgG compared to the former. Although no serious adverse events have been reported, mild to moderate side effects occurred more frequently after the first dose in the SARS-CoV-2-experienced than in naive subjects (67% versus 42%, respectively; p < .001). Notably, post-vaccination anti-SARS-CoV-2 spike IgG levels ≥20,000 AU/mL were independently associated with the risk of fever ≥38°C (adjusted odds ratio [aOR] 5.122, 95% CI 2.368-11.080, p < .0001).Our study showed high responsiveness of BNT162b2 vaccine and a relationship between levels of antibody response and reactogenicity. It suggests that a single dose of mRNA vaccine might evoke effective protection in SARS-CoV-2-experienced subjects.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , Health Personnel , Hospitals , Humans , RNA, Messenger , Referral and Consultation , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
4.
Front Immunol ; 12: 793191, 2021.
Article in English | MEDLINE | ID: covidwho-1608200

ABSTRACT

Purpose: To compare SARS-CoV-2 antigen-specific antibody production and plasma neutralizing capacity against B.1 wild-type-like strain, and Gamma/P.1 and Delta/B.1.617.2 variants-of-concern, in subjects with different Covid-19 disease and vaccination histories. Methods: Adult subjects were: 1) Unvaccinated/hospitalized for Covid-19; 2) Covid-19-recovered followed by one BNT162b2 vaccine dose; and 3) Covid-19-naïve/2-dose BNT162b2 vaccinated. Multiplex Luminex® immunoassays measured IgG, IgA, and IgM plasma levels against SARS-CoV-2 receptor-binding domain (RBD), spike-1 (S), and nucleocapsid proteins. Neutralizing activity was determined in Vero E6 cytopathic assays. Results: Maximum anti-RBD IgG levels were similar in Covid-19­recovered individuals 8‒10 days after single-dose vaccination and in Covid-19-naïve subjects 7 days after 2nd vaccine dosing; both groups had ≈2­fold higher anti-RBD IgG levels than Unvaccinated/Covid-19 subjects tracked through 2 weeks post-symptom onset. Anti-S IgG expression patterns were similar to RBD within each group, but with lower signal strengths. Viral antigen-specific IgA and IgM levels were more variable than IgG patterns. Anti-nucleocapsid immunoglobulins were not detected in Covid-19-naïve subjects. Neutralizing activity against the B.1 strain, and Gamma/P.1 and Delta/B.1.617.2 variants, was highest in Covid­19-recovered/single-dose vaccinated subjects; although neutralization against the Delta variant in this group was only 26% compared to B.1 neutralization, absolute anti-Delta titers suggested maintained protection. Neutralizing titers against the Gamma and Delta variants were 33‒77% and 26‒67%, respectively, versus neutralization against the B.1 strain (100%) in the three groups. Conclusion: These findings support SARS-CoV-2 mRNA vaccine usefulness regardless of Covid-19 history, and confirm remarkable protection provided by a single vaccine dose in people who have recovered from Covid-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , Immunoglobulin Isotypes/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Animals , BNT162 Vaccine/administration & dosage , COVID-19/virology , Chlorocebus aethiops , Female , Humans , Immunoassay/methods , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin Isotypes/blood , Immunoglobulin M/blood , Immunoglobulin M/immunology , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vaccination/methods , Vero Cells
5.
Science ; 370(6519): 950-957, 2020 11 20.
Article in English | MEDLINE | ID: covidwho-796948

ABSTRACT

Efficient therapeutic options are needed to control the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has caused more than 922,000 fatalities as of 13 September 2020. We report the isolation and characterization of two ultrapotent SARS-CoV-2 human neutralizing antibodies (S2E12 and S2M11) that protect hamsters against SARS-CoV-2 challenge. Cryo-electron microscopy structures show that S2E12 and S2M11 competitively block angiotensin-converting enzyme 2 (ACE2) attachment and that S2M11 also locks the spike in a closed conformation by recognition of a quaternary epitope spanning two adjacent receptor-binding domains. Antibody cocktails that include S2M11, S2E12, or the previously identified S309 antibody broadly neutralize a panel of circulating SARS-CoV-2 isolates and activate effector functions. Our results pave the way to implement antibody cocktails for prophylaxis or therapy, circumventing or limiting the emergence of viral escape mutants.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Amino Acid Motifs/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/administration & dosage , Antibodies, Viral/isolation & purification , CHO Cells , COVID-19 , Coronavirus Infections/therapy , Cricetinae , Cricetulus , Cryoelectron Microscopy , HEK293 Cells , Humans , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/immunology , Microscopy, Electron , Pneumonia, Viral/therapy , Protein Domains/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
6.
J Med Virol ; 92(9): 1637-1640, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-87346

ABSTRACT

This report describes the isolation, molecular characterization, and phylogenetic analysis of the first three complete genomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolated from three patients involved in the first outbreak of COVID-19 in Lombardy, Italy. Early molecular epidemiological tracing suggests that SARS-CoV-2 was present in Italy weeks before the first reported cases of infection.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genome, Viral , Genomics , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , Computational Biology/methods , Genomics/methods , Humans , Italy/epidemiology , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL